An Effective e-Commerce Recommender System Based on Trust and Semantic Information
نویسندگان
چکیده
منابع مشابه
An Intelligent E-commerce Recommender System Based on Web Mining
The prosperity of e-commerce has changed the whole outlook of traditional trading behavior. More and more people are willing to conduct Internet shopping. However, the massive product information provided by the Internet Merchants causes the problem of information overload and this will reduces the customer’s satisfaction and interests. To overcome this problem, a recommender system based on we...
متن کاملTrust Based Recommender System for Semantic Web
This paper proposes the design of a recommender system that uses knowledge stored in the form of ontologies. The interactions amongst the peer agents for generating recommendations are based on the trust network that exists between them. Recommendations about a product given by peer agents are in the form of Intuitionistic Fuzzy Sets specified using degree of membership, non membership and unce...
متن کاملRecommender System Based on Product Taxonomy in E-Commerce Sites
This article describes a novel and fast recommender system for websites based on product taxonomy and user click patterns. The proposed system consists of the following four steps. First, a product-preference matrix for each customer is estimated through a linear combination of the click, basket placement, and purchase statuses. Second, the preference matrix of the genre and that of the specifi...
متن کاملEffective Trust-aware E-learning Recommender System based on Learning Styles and Knowledge Levels
In the age of information explosion, e-learning recommender systems (ELRSs) have emerged as the most essential tool to deliver personalized learning resources to learners. Due to enormous amount of information on the web, learner faces problem in searching right information. ELRSs deal with the problem of information overload effectively and provide recommendations by taking into consideration ...
متن کاملA configuration-based recommender system for supporting e-commerce decisions
Multi-attribute value theory (MAVT)-based recommender systems have been proposed for dealing with issues of existing recommender systems, such as the cold-start problem and changing preferences. However, as we argue in this paper, existing MAVT-based methods for measuring attribute importance weights do not fit the shopping tasks for which recommender systems are typically used. These methods a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cybernetics and Information Technologies
سال: 2021
ISSN: 1314-4081
DOI: 10.2478/cait-2021-0008